Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Bioconjug Chem ; 34(6): 941-960, 2023 06 21.
Article in English | MEDLINE | ID: covidwho-2319816

ABSTRACT

Lipid nanoparticles (LNPs) have been recognized as efficient vehicles to transport a large variety of therapeutics. Currently in the spotlight as important constituents of the COVID-19 mRNA vaccines, LNPs play a significant role in protecting and transporting mRNA to cells. As one of their key constituents, polyethylene glycol (PEG)-lipid conjugates are important in defining LNP physicochemical characteristics and biological activity. PEGylation has proven particularly efficient in conferring longer systemic circulation of LNPs, thus greatly improving their pharmacokinetics and efficiency. Along with revealing the benefits of PEG conjugates, studies have revealed unexpected immune reactions against PEGylated nanocarriers such as accelerated blood clearance (ABC), involving the production of anti-PEG antibodies at initial injection, which initiates accelerated blood clearance upon subsequent injections, as well as a hypersensitivity reaction referred to as complement activation-related pseudoallergy (CARPA). Further, data have been accumulated indicating consistent yet sometimes controversial correlations between various structural parameters of the PEG-lipids, the properties of the PEGylated LNPs, and the magnitude of the observed adverse effects. Detailed knowledge and comprehension of such correlations are of foremost importance in the efforts to diminish and eliminate the undesirable immune reactions and improve the safety and efficiency of the PEGylated medicines. Here, we present an overview based on analysis of data from the CAS Content Collection regarding the PEGylated LNP immunogenicity and overall safety concerns. A comprehensive summary has been compiled outlining how various structural parameters of the PEG-lipids affect the immune responses and activities of the LNPs, with regards to their efficiency in drug delivery. This Review is thus intended to serve as a helpful resource in understanding the current knowledge in the field, in an effort to further solve the remaining challenges and to achieve full potential.


Subject(s)
COVID-19 , Nanoparticles , Humans , Liposomes/chemistry , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Lipids/chemistry
2.
J Med Chem ; 65(10): 6975-7015, 2022 05 26.
Article in English | MEDLINE | ID: covidwho-1915248

ABSTRACT

In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.


Subject(s)
COVID-19 Drug Treatment , COVID-19 Vaccines , Humans , RNA , RNA, Messenger/metabolism , SARS-CoV-2
3.
ACS Infect Dis ; 8(3): 422-432, 2022 03 11.
Article in English | MEDLINE | ID: covidwho-1700459

ABSTRACT

Since the beginning of the COVID-19 pandemic caused by SARS-CoV-2, millions of patients have been diagnosed and many of them have died from the disease worldwide. The identification of novel therapeutic targets are of utmost significance for prevention and treatment of COVID-19. SARS-CoV-2 is a single-stranded RNA virus with a 30 kb genome packaged into a membrane-enveloped virion, transcribing several tens of proteins. The belief that the amino acid sequence of proteins determines their 3D structure which, in turn, determines their function has been a central principle of molecular biology for a long time. Recently, it has been increasingly realized, however, that there is a large group of proteins that lack a fixed or ordered 3D structure, yet they exhibit important biological activities─so-called intrinsically disordered proteins and protein regions (IDPs/IDRs). Disordered regions in viral proteins are generally associated with viral infectivity and pathogenicity because they endow the viral proteins the ability to easily and promiscuously bind to host proteins; therefore, the proteome of SARS-CoV-2 has been thoroughly examined for intrinsic disorder. It has been recognized that, in fact, the SARS-CoV-2 proteome exhibits significant levels of structural order, with only the nucleocapsid (N) structural protein and two of the nonstructural proteins being highly disordered. The spike (S) protein of SARS-CoV-2 exhibits significant levels of structural order, yet its predicted percentage of intrinsic disorder is still higher than that of the spike protein of SARS-CoV. Noteworthy, however, even though IDPs/IDRs are not common in the SARS-CoV-2 proteome, the existing ones play major roles in the functioning and virulence of the virus and are thus promising drug targets for rational antiviral drug design. Presented here is a COVID-19 perspective on the intrinsically disordered proteins, summarizing recent results on the SARS-CoV-2 proteome disorder features, their physiological and pathological relevance, and their prominence as prospective drug target sites.


Subject(s)
COVID-19 Drug Treatment , Intrinsically Disordered Proteins , Drug Discovery , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Pandemics , SARS-CoV-2
4.
J Chem Inf Model ; 61(8): 4058-4067, 2021 08 23.
Article in English | MEDLINE | ID: covidwho-1322447

ABSTRACT

The COVID-19 pandemic has motivated researchers all over the world in trying to find effective drugs and therapeutics for treating this disease. To save time, much effort has focused on repurposing drugs known for treating other diseases than COVID-19. To support these drug repurposing efforts, we built the CAS Biomedical Knowledge Graph and identified 1350 small molecules as potentially repurposable drugs that target host proteins and disease processes involved in COVID-19. A computer algorithm-driven drug-ranking method was developed to prioritize those identified small molecules. The top 50 molecules were analyzed according to their molecular functions and included 11 drugs in clinical trials for treating COVID-19 and new candidates that may be of interest for clinical investigation. The CAS Biomedical Knowledge Graph provides researchers an opportunity to accelerate innovation and streamline the investigative process not just for COVID-19 but also in many other diseases.


Subject(s)
COVID-19 , Drug Repositioning , Antiviral Agents , Humans , Pandemics , Pattern Recognition, Automated , SARS-CoV-2
5.
ACS Nano ; 15(11): 16982-17015, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1284679

ABSTRACT

Lipid nanoparticles (LNPs) have emerged across the pharmaceutical industry as promising vehicles to deliver a variety of therapeutics. Currently in the spotlight as vital components of the COVID-19 mRNA vaccines, LNPs play a key role in effectively protecting and transporting mRNA to cells. Liposomes, an early version of LNPs, are a versatile nanomedicine delivery platform. A number of liposomal drugs have been approved and applied to medical practice. Subsequent generations of lipid nanocarriers, such as solid lipid nanoparticles, nanostructured lipid carriers, and cationic lipid-nucleic acid complexes, exhibit more complex architectures and enhanced physical stabilities. With their ability to encapsulate and deliver therapeutics to specific locations within the body and to release their contents at a desired time, LNPs provide a valuable platform for treatment of a variety of diseases. Here, we present a landscape of LNP-related scientific publications, including patents and journal articles, based on analysis of the CAS Content Collection, the largest human-curated collection of published scientific knowledge. Rising trends are identified, such as nanostructured lipid carriers and solid lipid nanoparticles becoming the preferred platforms for numerous formulations. Recent advancements in LNP formulations as drug delivery platforms, such as antitumor and nucleic acid therapeutics and vaccine delivery systems, are discussed. Challenges and growth opportunities are also evaluated in other areas, such as medical imaging, cosmetics, nutrition, and agrochemicals. This report is intended to serve as a useful resource for those interested in LNP nanotechnologies, their applications, and the global research effort for their development.


Subject(s)
COVID-19 , Nanoparticles , Humans , Liposomes , RNA, Messenger , Lipids/chemistry , COVID-19/prevention & control , Nanoparticles/chemistry , RNA, Small Interfering
6.
ACS Cent Sci ; 7(4): 512-533, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1225487

ABSTRACT

This report examines various vaccine platforms including inactivated vaccines, protein-based vaccines, viral vector vaccines, and nucleic acid (DNA or mRNA) vaccines, and their ways of producing immunogens in cells.

7.
ACS Omega ; 5(42): 27344-27358, 2020 Oct 27.
Article in English | MEDLINE | ID: covidwho-872642

ABSTRACT

In response to the ongoing COVID-19 pandemic, there is a worldwide effort being made to identify potential anti-SARS-CoV-2 therapeutics. Here, we contribute to these efforts by building machine-learning predictive models to identify novel drug candidates for the viral targets 3 chymotrypsin-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp). Chemist-curated training sets of substances were assembled from CAS data collections and integrated with curated bioassay data. The best-performing classification models were applied to screen a set of FDA-approved drugs and CAS REGISTRY substances that are similar to, or associated with, antiviral agents. Numerous substances with potential activity against 3CLpro or RdRp were found, and some were validated by published bioassay studies and/or by their inclusion in upcoming or ongoing COVID-19 clinical trials. This study further supports that machine learning-based predictive models may be used to assist the drug discovery process for COVID-19 and other diseases.

8.
ACS Pharmacol Transl Sci ; 3(5): 813-834, 2020 Oct 09.
Article in English | MEDLINE | ID: covidwho-697031

ABSTRACT

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has led to several million confirmed cases and hundreds of thousands of deaths worldwide. To support the ongoing research and development of COVID-19 therapeutics, this report provides an overview of protein targets and corresponding potential drug candidates with bioassay and structure-activity relationship data found in the scientific literature and patents for COVID-19 or related virus infections. Highlighted are several sets of small molecules and biologics that act on specific targets, including 3CLpro, PLpro, RdRp, S-protein-ACE2 interaction, helicase/NTPase, TMPRSS2, and furin, which are involved in the viral life cycle or in other aspects of the disease pathophysiology. We hope this report will be valuable to the ongoing drug repurposing efforts and the discovery of new therapeutics with the potential for treating COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL